Self-Assessment

Weeks 9: Multiple Regression with Both Qualitative and Quantitative Predictors; Multiple Comparisons

1. What is an adjusted mean? What potential benefit does it offer? How could it potentially be misleading?

2. Below is linked blood pressure data that was presented in previous self-assessments. Perform comparisons of systolic blood pressure among drugs (Ziac, Losartan, Lisinopril 40mg, Lisinopril 12.5mg) while controlling for weight, i.e.,

Systolic Blood Pressure = b0 + bj Drug + bi Weight

Where bj represents several drug coefficients and bi is an unnumbered coefficient for Weight.

Use the Bonferroni adjustment and set familywise alpha to .05. Present results in APA style. Also, present a table showing the predicted systolic blood pressure for someone who weighs 220, 200, and 180 pounds for each of the four treatments.

SPSS

http://www.bwgriffin.com/gsu/courses/edur8132/selfassessments/Week09/BloodPressureDrugs.sav

Excel

http://www.bwgriffin.com/gsu/courses/edur8132/selfassessments/Week09/BloodPressureDrugs.xlsx

3. Below is a data file containing the following variables for cars taken between 1970 and 1982:

mpg:	miles per gallon
engine:	engine displacement in cubic inches
horse:	horsepower
weight:	vehicle weight in pounds
accel:	time to accelerate from 0 to 60 mph in seconds
year:	model year (70 = 1970, to 82 = 1982)
origin:	country of origin (1=American, 2=Europe, 3=Japan)
cylinder:	number of cylinders

SPSS Data: http://www.bwgriffin.com/gsu/courses/edur8132/selfassessments/Week04/cars_missing_deleted.sav

(Note: There are underscore marks between words in the SPSS data file name.) Other Data Format: If you prefer a data file format other than SPSS, let me know.

For this problem we wish to know whether MPG differs among car origins and number of cylinders while controlling for the weight of the car. The regression model for this study follows:

Predicted MPG = b0 + origin of car + number of cylinders + car weight

Origin of car is categorical. Number of cylinders may appear to be ratio, but since observed categories of this variable are limited, it is best to treat this variable as categorical. Note the following number of cylinders reported:

-	Number of Cylinders								
		Frequency	Percent	Valid Percent	Cumulative Percent				
Valid	3 Cylinders	4	1.0	1.0	1.0				
	4 Cylinders	199	50.9	50.9	51.9				
	5 Cylinders	3	.8	.8	52.7				
	6 Cylinders	83	21.2	21.2	73.9				
	8 Cylinders	102	26.1	26.1	100.0				
	Total	391	100.0	100.0					

As the frequency display above shows, the number of cylinders include 3, 4, 5, 6, and 8. However, only 4 cars had 3 cylinders and only 3 cars had 5 cylinders. Given the small sample sizes for these categories, it is best to remove these cases from the regression analysis. There are several ways to accomplish this. Four approaches are (a) manually delete these cases after sorting all cases on number of cylinders, (b) telling SPSS to treat these 7 cases as missing values so they will not be included in any analysis (use Recode into Same Variable and set 3 Cylinders and 5 Cylinders as system missing), (c) defining 3 and 5 Cylinders as missing values in the variable missing values, or (d) using the Select Cases command to filter these cases from all analyses. Other possibilities also exist.

Of these four, option (d) works well and does not require deletion of any cases. This option is explained below.

Step 1: Open the Select Case window

🛗 cars_missing_de	eleted.sav - SPSS Data Editor			
File Edit View	Data Transform Analyze Graphs	Ut	ilities Ad	d-ons W
⊯ ∎⊜ <u></u> 10:	Define Variable Properties Copy Data Properties Define Dates		F	0
	Insert Variable		rse	we
1	Insert Cases		90	
2	Go to Case		95	
3	Sort Cases		129	
4	Restructure		72	
5	Merge Files	F	88	
6	Aggregate Identify Duplicate Cases		100	
7	C. P. Fl		85	:
8	Select Cases		112	
9	Weight Cases		97	

Step 2: Choose the select If option

Select Cases	
Miles per Gallon [mpg] Engine Displacement (Horsepower [horse] Vehicle Weight (bs.) [v Time to Accelerate fror Model Year (modulo 10 Country of Origin [origin Number of Cylinders [c	Select C All cases I f condition is satisfied If C Random sample of cases Sample C Based on time or case range Range C Use filter variable: Use filter variable: Use filter variable:
	Filtered C Deleted
, Current Status: Do not filter cas	Ses

Step 3: Define the filter so SPSS can determine which cases NOT to select.

We do not want cylinders of 3 or 5, so in the Select Cases IF box, write

cylinders ~= 3

The symbol ~= means "not equal"; this tells SPSS not to select any cases in which cylinders are 3. Also, write

cylinders ~= 5

so SPSS knows not to select cases when cylinders are 5. To combine these two, we use the ampersand symbol, &, which means select all cases which are not 3 and 5 cylinders. See image below.

Select Cases			23				
Miles per Gallon [mpg] Engine Displacement (Select			H	accel	vear	orig
Horsepower [horse] Vehicle Weight (bs.) [v	If condition is If	satisfied ylinder ∼= 3 & cylinder ~=		4	14	73	
 Time to Accelerate from Model Year (modulo 10 	C Random samp	ble of cases		5	15	78	
Country of Origin [origin Number of Cylinders [c]	C Based on tir	Select Cases: If	-				×
() cylinder ~= 3 & cylind	C Use filter va	Miles per Gallon [mpg] Engine Displacement (Horsepower [horse]	cylinde	r~=3	3 & cylinder ∼= 5		*
	Unselected Ca	Vehicle Weight (bs.) [v Time to Accelerate fror Model Year (modulo 10 Country of Origin [origin]	+ - <		7 8 9 Fund	tions:	×
Current Status: Filter cases by	values of filter_\$	Number of Cylinders [c] Cylinder ~= 3 & cylinder		= & ~(= 1,2,3 AR 0,AR) Delete CDI	(lest, valde, valde,) SIN(numexpr) FNORM(zvalue) F.BERNOULLI(q,p)	-
11 17	7		Conti	inue	Cancel H	elp	

Once these cases are defined, click Continue then OK to process this command. Next, check that the appropriate cases were selected by running the Frequency command for cylinders as shown below.

Data	a Editor										
m	Analyze	Graphs	Utilities	Add-	ons	Window H	lelp				
2	Repo	rts		•	<u>II</u>		_	1			
58	Desci	iptive St	tatistics	•	(Frequencie	5	-			
_	Table	s		•			5		Vear	origin	
_	Com	pare Me	ans	•		Explore			year	Ungin	Cyr
	Gene	ral Linea	ar Model	•		Crosstabs	- \	14	73	3	6
_	Mixed	d Model	s	•		Ratio		15	78	3	;
-	Corre	late		•	F	2160	J	10	75	1	
	Regre	ession		•	L		ncies	12	/5		
	Logli	near		•	ι.		icies .				
-	Class	ify		•	E	🔶 Miles p	oer Gallon (mj	*	Variable(s):		ок -
_	Data	Reductio	on	•	Ŀ	🔹 🏶 Engine	e Displaceme		Number of	Cylinders (cy	aste
	Scale			•	ι.	Horse Vehicle	e Weight (bs	_		F	leset
	Nonp	aramet	ric Tests	•		Time t	o Accelerate		▶		
-	Survi	val		•	E	- 🏶 Model	Year (module	1.7			
_	Multi	ple Resp	oonse	•	Ŀ	Countr	yofOngin [o er∼= 3 & cvi				Help
	- /	0		11	-						
	11	9	9	97		Display	frequency tab	oles			
	16	3	1:	25				S	tatistics Charts.	Format	
	20	^	(00		2060		17	01	1	

And the results should look like this:

Frequencies

	Statistics					
Nur	Number of Cylinders					
Ν	Valid	384				
	Missing	0				

Number	of	Cyli	nd	ore
Number	01	Cyn	Πü	ers

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	4 Cylinders	199	51.8	51.8	51.8
	6 Cylinders	83	21.6	21.6	73.4
	8 Cylinders	102	26.6	26.6	100.0
	Total	384	100.0	100.0	

Note that no cases of cylinders equal to 3 or 5 were selected.

Present an APA styled regression analysis with DV = MPG, IV = origin, IV = Cylinders (4, 6, and 8 only), and IV = vehicle weight. Set alpha = .01. You will have to create the dummy variables for origins and cylinders. Also present Scheffé confidence intervals comparisons among origins and among cylinders.

In addition to APA styled results, present literal interpretations for each regression coefficient.