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Measures of effect size

JOHNT. E. RICHARDSON
Brunei University, Uxbridge, England

Twodifferent approaches have been used to derive measures of effect size. One approach is based
on the comparison of treatment means, The standardized mean difference is an appropriate measure
of effect size when one is merely comparing two treatments, but there is no satisfactory analogue for
comparing more than two treatments. The second approach is based on the proportion of variance
in the dependent variable that is explained by the independent variable. Estimates have been pro­
posed for both fixed-factor and random-factor designs, but their sampling properties are not well un­
derstood. Nevertheless, measures of effect size can allow quantitative comparisons to be made
across different studies, and they can be a useful adjunct to more traditional outcome measures such
as test statistics and significance levels.

Most psychological researchers appreciate in abstract
terms at least that statements describing the outcomes
of tests of statistical inference need to be distinguished
from statements describing the importance of the rele­
vant findings in theoretical or practical terms. The latter
may have more to do with the magnitude of the effects in
question than their level of statistical significance.
Cohen (1965) remarked that in research concerned
with comparisons among treatment means, investigators
nonetheless typically confined themselves to reporting
test statistics such as t or F and did not attempt to derive
measures of effect size. More specifically, Craig, Eison,
and Metze (1976) surveyed the articles in three different
psychological journals that had employed Student's t
test; none of these reported a measure of effect size, and
in many instances the "significant" effects proved on
inspection to be relatively slight in magnitude. Craig et
al. concluded that "researchers and journal editors as a
whole tend to (over)rely on 'significant' differences as
the definition ofmeaningful research" (p. 282). This sit­
uation does not seem to have altered in the intervening
time.

This paper reviews research on the development and
practical value ofdifferent measures ofeffect size. Clas­
sically, two different approaches have been taken in de­
riving such measures. One approach is based on the com­
parison of different treatment means, and the other
approach evaluates the proportion of the variance in the
dependent variable that is explained by the independent
variable. Winer, Brown, and Michels (1991) noted that
the first approach tends to be used in fixed-effects de-
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signs, where the treatments employed exhaust the popu­
lation of interest. The second approach is typically used
in random-effects designs, in which the treatments are
regarded as a sample from some indefinite population of
treatments, and in which it makes little sense to compute
an effect size index by comparing the particular treat­
ments that happened to be sampled.

The relevant publications on this topic extend back
over much of this century, and are located in diverse
sources in psychology, education, and statistics that may
not be readily accessible to interested researchers. In
this paper, therefore, I have endeavored to provide a tu­
torial overview of the subject, tracing the historical de­
velopment of the measures of effect size encountered
in the contemporary literature. At the same time, I want
to argue that measures of effect size have a legitimate
place in the advancement ofcurrent psychological theory
and research; thus I will make practical suggestions
about the strengths and weaknesses of particular mea­
sures.

I begin by considering the mean difference and the
standardized mean difference between two independent
populations, with the primary focus on the derivation and
estimation of the latter as a measure ofeffect size and on
its concomitant advantages and disadvantages. I will point
out that this notion does not readily generalize to a situ­
ation in which there are three or more populations, and I
will then suggest other measures based on the proportion
ofexplained population variance. These measures repre­
sent various attempts to generalize the correlation coef­
ficient to research designs in which the independent vari­
able defines a number of discrete groups. This strategy
can be employed regardless of whether the groups con­
stitute a fixed set oftreatments or only a particular sample
from some indefinite population of treatments. Finally, I
will make some comments concerning the application of
measures ofeffect size in meta-analytic research: that is,
the evaluation and comparison of the findings obtained
across different studies in the research literature.



COMPARISONS BETWEEN
TREATMENT MEANS

The Standardized Mean Difference
In the simplest situation, two samples of size n l and n2

(where n l + n2 = N) are drawn independently and at
random from populations whose means are /.11 and /.1b
respectively, and whose standard deviations are 0"1 and
0"2' respectively. Suppose that the two samples are found
to have means of ml and m2 and standard deviations of
s 1 and S2' respectively. The simplest index of effect size
is the difference between the two population means,
(/.11 - /.12)' This measure has two useful features. First, it
is expressed in terms of the original units of measure­
ment, and thus it is intuitively meaningful to researchers
themselves (Wilcox, 1987). Second, although it is a pa­
rameter based on the underlying populations and hence
is typically unknown, it has an unbiased estimate in the
difference between the sample means (m I - m2) (Winer
et al., 1991, p. 122).

Nevertheless, this index has a major drawback in that
it depends on the specific procedure that has been em­
ployed to obtain the relevant data. In order to make
meaningful comparisons among studies employing dif­
ferent procedures or to make useful generalizations about
the relevant phenomena, it is necessary to measure the
effect size in a manner that is not tied to arbitrary tech­
nical aspects of individual research studies. Cohen
(1965) pointed out that this could be achieved if the dif­
ference between the two population means were stan­
dardized against the population within-treatment stan­
dard deviation. Assuming that 0"1 = 0"2 = 0", say, this
yields an effect size index 0, defined as follows (Cohen,
1969, p. 18):

0= (/.11 - /.12)/0".

In other words, 0" is regarded as an arbitrary scaling fac­
tor, and 0 is the mean difference that would obtain if the
dependent variable were scaled to have unit variance
within both populations (Hedges & Olkin, 1985, p. 76).
Effectively, the magnitude ofa treatment effect is judged
in relation to the degree of error variability in the data
(Winer et al., 1991, p. 121). Cohen (1965) proposed that
"small," "medium," and "large" effects could be opera­
tionalized as effects for which the difference between the
population means was 0.250",0.50", and 0", respectively;
subsequently, however (Cohen, 1969, pp. 22-24), he
characterized them as effects for which 0 = 0.2,0.5, and
0.8, respectively.

The most natural manner to estimate 0 would be to
substitute unbiased estimates of its numerator and de­
nominator. As just noted, the difference between the
sample means, (m l - m2), is an unbiased estimate of
(/.11 - /.12)' Under the assumption of homogeneity of
variance, an unbiased estimate, s, of the common popu­
lation standard deviation, 0", is given by
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2 (nl-l)sf + (n2 - l)si
s = ---- -.

(nl + n2 - 2)

This yields an estimator d = (ml - m2),'s. This is not,
however, an unbiased estimate of 0.1 More specifically,
Hedges (1981) showed that the expected value of d is
equal to O/c(m), where

c(m) = rem /2)
r, (m /2)1 . rr(m - I) / 21

where m = (nl + n2 - 2), and where rex) is the gamma
function. Hedges provided exact values of c(m) for m ~

50, and he also pointed out that it was closely approxi­
mated by the function [I - 3/(4m - 1)]. Although it ap­
proaches unity when m is large, it is appreciably smaller
than unity when m is small, indicating that d seriously
overestimates o(see also Hedges & Olkin, 1985, pp. 78­
80, 104 105).

Hedges then observed that the bias inherent in d could
easily be removed by defining a new estimator d' =
d . c(m). Not only is the latter an unbiased estimator of
0, but it also has a smaller variance and hence a smaller
mean square error than d. In this sense, d' dominates d
as an estimator of 0 (see Hedges & Olkin, 1985, p. 81).
Finally, Hedges showed that when n I = n2' d' is the
unique uniformly minimum variance unbiased estimator
of O. Hedges and Olkin (1985, p. 79) pointed out that d'
was itself a sample statistic, and that its sampling distri­
bution was closely related to the noncentral t distribu­
tion. Specifically, if n= n1n/N, then vn .d' has a non­
central t distribution with noncentrality parameter \In . 0
and (nl + n2 - 2) degrees of freedom. Asymptotically,
the sampling distribution of d' is normal with a mean
equal to 0 and a variance equal to [N/(n 1n2) + 02/(2N)]
(p. 86). Hedges and Olkin (1985, pp. 81 -82) showed that
d' was neither the maximum likelihood estimator of 0,
which is given by d . \I [Nt(N - 2)], nor even the minimum
mean square error estimator of 0 (since a "shrunken" es­
timator can be specified that has uniformly smaller mean
square error than d'). Nevertheless, they considered that
d' had good properties for small sample sizes and should
be used as the basic estimator of effect size for data ob­
tained from a single study (p. 83).2

Several reviewers have attributed the index 0 to Glass
(1976) (e.g., Hedges & Becker, 1986; Wilcox, 1987; Winer
et al., 1991, p. 122). This is clearly incorrect; Cohen
(1965) discussed the basic notion informally and then
formally as an effect size index (Cohen, 1969). Glass's
particular contribution was to point out that an estimate
of 0could itselfbe used as a dependent variable in order
to evaluate the consistency and the magnitude of a par­
ticular phenomenon across different studies in the liter­
ature. Smith and Glass (1977) used this approach to
argue for the efficacy of psychotherapy on the basis of
the effect sizes obtained in 375 different studies. Subse-
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quently, Glass, McGaw, and Smith (1981) provided a
more extended account of the meta-analysis of social
research, and nowadays measures of this sort are fairly
widely used, most notably in the investigation of gender
differences (see, e.g., Hyde, 1981; Hyde, Fennema, &
Lamon, 1990; Hyde & Linn, 1986). Glass and his co­
authors did not mention Cohen's earlier work in any of
these publications, but Cohen was patently the intended
target oftheir criticism that "there is no wisdom whatso­
ever in attempting to associate regions ofthe effect-size
metric with descriptive adjectives such as 'small: 'mod­
erate: 'large,' and the like" (Glass et al., 1981, p. 104,
italics in original).

One distinctive characteristic of Glass's (1976) ac­
count was that it was concerned with the comparison of
one or more treatment groups with a single control
group. The accompanying illustrations showed hypo­
thetical distributions of the treatment groups expressed
in terms of percentiles of the control group. In other
words, Glass standardized differences between the group
means against the standard deviation of the control
group alone (see also Glass et al., 1981, p. 29). Ifthe lat­
ter group is arbitrarily designated as Group 2, the esti­
mate ofthe population effect size 0 for Group 1would be
(m\ - m2)/s2.However, as Glass et al. (1981,p. 106) them­
selves noted, various choices of the standard deviation
with which to scale the differences between the group
means can result in substantial differences in effect size.

Glass's (1976) original paper contained no justifica­
tion for this way of computing a standardized mean dif­
ference. According to Hedges (1981), Glass's own con­
cern was that the standard deviations ofdifferent samples
would vary by chance even if the variances of the under­
lying populations were homogeneous. Consequently,pool­
ing pairs of sample variances could result in different
standardized values of identical mean differences when
several treatment groups were being compared with a sin­
gle control group. Conversely, as Glass et al. (1981,
pp. 106-107) pointed out, standardizing the differences
between the mean scores obtained across several treat­
ment conditions against the standard deviation ofthe con­
trol group alone would ensure that equal mean differences
were associated with equal effect sizes in the face ofhet­
erogeneous within-group variances. They also cautioned
that the latter problem could arise in research practice as
the result of ceiling and floor effects (pp. 109-111).

However, Hedges (1981) argued that, if the assump­
tion of homogeneity of variance were tenable, then the
most precise estimate of the population variance would
be obtained by pooling all the sample variances, and that
in any case Glass's reservation simply did not apply to an
investigation that involved merely two samples (see also
Hedges & Olkin, 1985, p. 78). Hedges went on to show
that the expected value of Glass's estimate of owas also
olc(m), where c(m) was defined as above, but where m
was simply the degrees of freedom for the control group
(n2 - 1). Hedges and Olkin (1985, p. 79) pointed out
that the bias and the variance of d were smaller than the

bias and the variance of Glass's estimate, and that con­
sequently the former was a uniformly better estimator
than the latter, regardless of the value of o. Rosenthal and
Rubin (1982) and Kraemer (1983) showed how values of
d obtained from several different experiments could be
tested for homogeneity for the purposes ofmeta-analysis.
Hedges (1982a, 1982b) presented an equivalent test for
the homogeneity of values of the unbiased estimate d',
and showed how the latter values could be combined to
yield both a weighted estimator of 0 and confidence in­
tervals for o. Hedges (1982c) developed additional proce­
dures for analyzing whether effect size could be predicted
by either continuous or discrete independent variables.

Strengths and Weaknesses ofthe
Standardized Mean Difference

Hedges and Becker (1986) identified a number ofpos­
itive features of the standardized mean difference as a
measure of effect size. First, they claimed that it was
easy to understand and had a consistent interpretation
across different research studies. Second, it preserves
information about the direction of the relevant effects
(although it is possible to adapt it to measuring differ­
ences in either direction by defining 0 = 1)11 - )121 Ia;
Cohen, 1969, p. 18). Third, the sampling distributions of
the uncorrected statistic d and the corrected statistic d'
are simple and well understood, which facilitates the use
of analytic procedures. In addition, Hedges and Becker
pointed out that these quantities can be readily computed
from the values of the test statistics t and F reported by
other researchers in published articles. This is of course
not surprising, since t is normally calculated as (m, ­
m 2)1-J[s2(1ln\ + lIn 2)], and since F can be shown to be
equal to t2• Ifa study provides a value of t, then the value
of the uncorrected statistic d can be computed as t .
-J(1ln l + lIn 2); if a study provides a value of F from a
one-way analysis of variance, then the value of d can be
computed as -J[F . (lin, + lIn2)]. Both computations
obviously assume homogeneity ofwithin-group variance
(Glass et al., 1981, p. 108). More complicated computa­
tions are needed in the case of factorial designs, but in
each case the value of the corrected statistic d' can be
calculated as d . c(m).

Against these features, a number of criticisms have
been put forward. First, Gibbons, Olkin, and Sobel (1977)
suggested that because the standardized mean difference
was unitless, its specification "requires a much more so­
phisticated acquaintance with both the details of the ap­
plication as well as the statistical analysis and its impli­
cations" (p. 63). Nevertheless, although there may well
be practical circumstances in which an investigator
might find it more congenial to express research findings
in terms of the original units of measurement, there are
also many situations in which the specific scale of mea­
surement is of no theoretical or practical interest. Sec­
ond, Wilcox (1987) pointed out that the standardized mean
difference assumed that the samples had been drawn from
populations with the same variance, and that if this as-



sumption were violated, a unitless measure ofeffect size
"would seem not to exist" (p. 47). However, Hedges and
Olkin (1985, p. 78) remarked that there were different
ways to create an estimated standardized mean differ­
ence of the form (m 1 - m2)/s*, where s* was a standard
deviation; different choices of s* would yield different
estimators, but s* could be defined (for example) either
as s I or as s2 (see also Glass et aI., 1981, p. 106). Finally,
Kraemer and Andrews (1982) noted that the standardized
mean difference reflected the choice of measuring in­
strument as well as the magnitude ofthe treatment effect
in that it was sensitive to nonlinear transformations of the
raw data. They put forward a nonparametric measure of
effect size based on the ordinal properties of the mea­
surement scales and therefore invariant under all mono­
tonic transformations of the data. Nevertheless, their crit­
icism would also be true of the nonstandardized mean
difference, and it does not of course detract from the fact
that the standardized mean difference is invariant over all
linear transformations of the raw data.

However, Hedges (1981) himself identified three fac­
tors that tend to weaken the standardized mean difference
as a measure ofeffect size. Two of these relate to the fact
that the magnitude of the group difference is compared
with the variability within each of the groups, with the
implicit assumption that the latter results from stable dif­
ferences among subjects, an assumption that might not
be valid. First, the responses of different subjects to the
experimental treatment may vary, even if the nature of
the intervention is identical for all the subjects in the ex­
perimental group. In other words, there may be a subject­
by-treatment interaction, and this will contribute to the
residual term in the structural model, as will any other
unmeasured "nuisance" variables. Second, ifthe response
measure is not perfectly reliable, then measurement error
will also contribute to the within-group variability. If 0
is taken to refer to the standardized mean difference in
the absence of errors of measurement, d' will systemat­
ically underestimate that quantity. Hedges then noted that
the standardized mean difference when errors of mea­
surement are present is 0' = 0 . '-Jp, where p is the relia­
bility of the response measure. Accordingly, ifp is known,
one can remove the bias resulting from measurement
error by dividing d' by -Jp. The third factor is the ade­
quacy of the response measures as valid indices of the
underlying traits, abilities, or processes; to the extent that
they have unique factors, they will be partially invalid.
Hedges showed that if the experimental treatment affects
only the common factor assumed to be shared by the tests
measuring a particular trait, ability, or process, then the
presence of unique factors reduces the standardized
mean difference (and hence the estimated value of 0).
The extent of this bias can be computed (and thus cor­
rected) if the correlation between the invalid response
scale and a valid response scale is known. However, if the
intervention affects both the common and unique factors,
the effect of invalidity may be either to increase or de­
crease the standardized mean difference.
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Generalization to k > 2
As originally defined above, the parameter 0 does

not generalize to designs involving k treatments (where
k> 2) in a straightforward manner. This may encourage
researchers to group together possible treatments into
just two superordinate categories (e.g., experimental vs.
control) for the purposes ofmeta-analysis. Presby (1978)
argued, however, that this would obscure genuine differ­
ences among the treatments within these categories.
Cohen (1969, p. 269) suggested that for k ~ 2, one could
define 0 to be the range ofthe standardized means (or the
standardized range of the means), (flmax - flmln)/a,

where flmax is the largest of the k means, flmm is the
smallest of the k means, and a, as before, is the common
standard deviation within each of the k populations.
Cohen suggested that when k = 2, the effect size index
is reduced to that defined earlier, (fll - fl2 )/a. In fact,
however, it reduces to the non directional effect size index,
Iu, - fl21 Ia.Moreover, when k> 2, this new index is not
affected by the precise values of the (k - 2) intermedi­
ate means, and hence it is an insensitive measure of ef­
fect size among the entire set of k treatments.

Earlier, Winer had described an alternative approach
to this problem as part of the single-factor analysis of
variance (1962, pp. 57-65). He defined the effect of the
ith treatment, t., as the difference between the popula­
tion mean for the ith treatment, fli' and the grand mean
of the population means, fl. Winer then pointed out that
one parameter indicating the extent to which the treatment
effects differ is a; = (Irl)/(k - 1) = [I(f1i - fl)2]/(k ­
1). He showed that if each sample contains n individuals
and o? is the variance due to experimental error within
each of the populations, then the expected value of the
mean squares across the treatments is (na; + ( 2) , and
the expected value of the residual mean squares is a 2•

The null hypothesis (that a; = 0) might therefore be
tested by computing the usual F ratio between the mean
squares across the treatments and the residual mean
squares. Under the alternative hypothesis (that a; oF 0),
Winer stated that the expected value of the latter ratio
was (no] + ( 2)/a 2, but this is incorrect. The expected
value of the ratio between two variables is a biased esti­
mate of the ratio between their individual expected val­
ues (see note 1). In particular, if sf and si are indepen­
dent unbiased estimators of ar and a], respectively,
then the expected value of sT/si is greater than aria}
(Kendall & Stuart, 1977, p. 242). This error was cor­
rected in the second edition of Winer's book (see Winer,
1971, p. 166). Otherwise, he gave no indication as to
how his effect size index might be estimated from sam­
ple data.

The rationale for the use of (k - 1) rather than k in
the denominator of Winer's formula for a; is also un­
clear. Vaughan and Corballis (1969) noted that it was ap­
propriate in the case of a random-effects design where
the k treatments are regarded as a sample from some in­
definite population of treatments. However, in this case,
as mentioned above, it makes little sense to compute an ef-
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feet size index by comparing the means of the k treat­
ments that happened to be sampled. For a fixed-effects
design, on the other hand, the k treatments exhaust the
relevant population, and Gl is itself a parameter of that
population rather than a statistic. Vaughan and Corbal­
lis pointed out that it should therefore be defined as
CLrl)/k (see Winer et aI., 1991, p. 123). The expected
value of the mean squares across the treatments is there­
fore [kn . GlI(k - 1) + GZ] (see also Fleiss, 1969), and
it follows that an unbiased estimate of Gl is given by
(k - 1)[MS(Treatments) - MS(Residual)]/(kn) = (k ­
I )(F - 1) . MS(Residual)/ (kn)(cf. Winer, 1971,pp. 428­
429). Vaughan and Corballis showed how this approach
could be generalized to two-factor and three-factor de­
signs with interaction terms and to designs in which
within-subjects comparisons are used.

The variance of the treatment means has the disad­
vantage that it is expressed in terms of the square of the
original units of measurement, a scale that might not in
itselfbe meaningful, and that will in any case be contin­
gent on the specific procedure that was employed to ob­
tain the raw data. Once again, it might be helpful to stan­
dardize this measure in some way, so that it is not tied to
arbitrary technical aspects ofparticular research studies.
Hays (1963, p. 384) pointed out that under the alternative
hypothesis the ratio MS(Treatments)/MS(Residual)
would be expected to follow the noncentral F distribu­
tion with a noncentrality parameter ofv' [(Ln' rZ)/GZ],
which is equal to v'(NGlIGZ) or (G,/G) . v'N. Consequently,
the variance (or the standard deviation) of the treatment
means might be conveniently standardized against the
variance (or the standard deviation) of the constituent
populations.

Cohen (1969, pp. 267-269) accordingly proposed an
alternative effect size index, f, defined as the ratio be­
tween the standard deviation of the treatment means and
the standard deviation within the populations. Thus, / =
G,/G, where G, = v'{[L(.ui - .uP] /k}. As Cohen noted,
this is equal to the standard deviation of the standardized
population means and is a dimensionless quantity. Co­
hen claimed that when k = 2, / = Yz8, which is strictly
speaking incorrect: / is nonnegative and nondirectional
and thus is equal to Yz181.Cohen went on to suggest that
small, medium, and large effects could be defined in terms
of values of/equal to 0.1, 0.25, and 0.4 (pp. 277-281).
He also discussed how/could be applied to factorial de­
signs (pp. 277-281), and in later writings he described
how it could be generalized to multiple regression (Cohen,
1977, p. 410; 1988, p. 473). This index is in itselfof lim­
ited relevance to research practice, however, because
Cohen did not show how it could be reasonably estimated
from sample data. Nevertheless, the square of/is equal
to the ratio between the component of variance that is
explained by the treatment variable and the component
that is not so explained. The alternative approach to de­
riving measures of effect size is based on the estimation
of these variance components.

COMPAJUSONSBETWEEN
V~CECOMPONENTS

The Correlation Coefficient
The alternative approach to deriving measures of ef­

fect size is based on quantifying the proportion of vari­
ance in the dependent variable that is explained by the in­
dependent variable. As Hedges and Olkin (1985, p. 100)
noted, the explained "variance" is often not formally a
variance at all, but the difference between the overall vari­
ance in the dependent variable and the conditional vari­
ance in the dependent variable, taking into account the
effect ofthe independent variable. On this approach, one
tackles the problem of quantifying the magnitude of
treatment effects by measuring the strength of associa­
tion between the independent variable and the depen­
dent variable, and the latter is expressed in terms ofsome
kind ofcorrelation coefficient (Winer et aI., 1991, p. 121).

Cohen (1965) remarked that the possibility for confu­
sion between the levels of statistical significance associ­
ated with particular empirical findings and the magni­
tude and hence the importance of the relevant effects
could be reduced if the outcomes are expressed as cor­
relation coefficients. It is fairly well known that the lin­
ear correlation coefficient, Pearson r, has a straightfor­
ward interpretation as a measure ofeffect size, in that r Z,

which is often termed the "coefficient ofdetermination,"
is equal to the proportion of the total variation in the de­
pendent variable that can be predicted or explained on
the basis of its regression on the independent variable
within the sample being studied (see, e.g., Hays, 1963,
p. 505). Similarly, the square ofa population correlation
coefficient, p, can be interpreted as the proportion of the
variance in the dependent variable that is explained by its
regression on the independent variable within the popu­
lation in question (see, e.g., Hays, 1963, p. 512). Else­
where, Cohen (1969, pp. 76-77) suggested that in corre­
lational research "small," "medium," and "large" effects
could be characterized as values of p equal to .1, .3, and
.5, corresponding to values of pZ equal to .01, .09, and
.25, respectively. In addition, Glass (1976) noted that r
could be employed as an index of effect size in meta­
analytic investigations, and Kraemer (1979) described
procedures for evaluating the homogeneity ofthe correla­
tion coefficients obtained from several different studies.

Suppose that the number of pairs of observations
within a sample is N, that the independent and dependent
variables are X and Y, respectively, and that the total vari­
ation (in other words, the total sum of squares) in Y is
SS(Total). The mean square that is associated with the
linear regression of Y on X will be SS(Total) . r Z with
one degree of freedom, and the mean square that is as­
sociated with the residual (i.e., unexplained) variation in
Y will be SS(Total) . (1 - r 2)/(N - 2) with (N - 2) de­
grees of freedom (cf. Hays, 1963, pp. 517-521). Under
the null hypothesis ofno correlation between X and Y(i.e.,
p = 0), these are independent estimates ofthe population



variance in Y, and hence the statistic r 2 • (N - 2)/(1 ­
r 2) is distributed as Fwith 1 and (N - 2) degrees offree­
dom. Equivalently, the square root of this quantity, r .
.)[(N - 2)/( I - r 2) ] , is distributed as t with (N - 2) de­
grees of freedom.

Under the alternative hypothesis (i.e., P oF 0), however,
the total population variance on Y ((J9, say) is to be di­
vided into two parts: the explained variance, p?(J9, and
the residual variance ((J9 x' say). Here, the expected
value of the mean square associated with the total vari­
ance in Y is (J9, but the expected value ofthe mean square
associated with the residual variance is (J9Ix' The ratio
between the latter mean square and the former mean
square is thus a reasonable estimate of the proportion of
variance in the dependent variable that is not explained
by its regression on the independent variable, and hence
the following would be a reasonable estimate of p2:

est. p 2 = 1- MS(Residual) .
MS(Total)

The latter quantity is equal to (Nr 2 - r 2 - I)i(N - 2),
which is less than r 2 itself except when r = ± I.

A different approach to the same problem can be taken
if one notes that the expected value of the mean square
associated with the regression of Yon X in the sample is
((J9Ix + Np2(J9), and the expected value of the mean
square associated with the residual variance in the sam­
ple is (J9 x. It then follows that the difference between
these mean squares is an unbiased estimate of the quan­
tity Np2(J9, whereas the sum of the former and (N - 1)
times the latter is an unbiased estimate ofN(J9.Thus, the
ratio between these quantities would be an alternative es­
timate of p2:

2 MS(Regression) - MS(Residual)
est.p = - - -

MS(Regression) + (N - 1) . MS(Residual)

This suggestion was made by Hays (1963, pp. 523-524).
The latter quantity is equal to (Nr 2 - r 2 - 1)/(N ­
r2 - I), which is once again less than r? except when r =
± I. The ratio between the first and second estimates of
p2 equals 1 + [MS(Residual)/SS(Total)], which is at
most [1 + II(N - 2)].

If the independent variable is dichotomous, the situa­
tion is formally equivalent to the comparison of two
treatment means, as discussed earlier in this article. In
other words, as Cohen (1965) pointed out, an index ofef­
fect size for the comparison of two treatment means can
be obtained ifone defines a dichotomous dummy variable
to represent membership of one or the other of the two
populations and computes the point-biserial correlation
coefficient between the continuous dependent variable
and the dichotomous dummy variable. This can be cal­
culated from reported values of t or F by the formulae
rpb = ')[t2/(t2 + N - 2)] andrpb = 'I/[F/(F + N - 2)]. In
this situation, rib measures the proportion ofthe total vari­
ation in the dependent variable that is associated with
membership of the two treatment groups. Cohen (1969,
p. 22) pointed out that there was a straightforward rela-
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tionship between the population point-biserial correlation
coefficient Ppb and the effect size index 0 described pre­
viously. Ifp and q are the proportions of cases in the two
populations, then Ppb = 0/.)[02 + (lIpq)]; more specif­
ically, ifp = q = 112, then Ppb = 0/>1(02 + 4). In the case
of the sample statistics rpb and d, however, simple alge­
braic manipulation of the formulae already given shows
that rpb = d/>I[d2 + N(N - 2)/n,n2 ] .

The Correlation Ratio
The same procedure can be used in situations in which

there are more than two treatment groups, provided that
they can be assigned meaningful numerical values. Of
course, as Hedges and Olkin (1985, p. 101) pointed out,
in this case the squared correlation coefficient reflects
the degree of linear relationship between the indepen­
dent variable and the dependent variable, and does not
necessarily reflect nonlinear components of their associ­
ation. Equivalently, in comparing more than two treat­
ment samples, the computation of a linear correlation
coefficient will systematically underestimate the effect
size. The appropriate generalization of the correlation
coefficient is the correlation ratio, 1] (eta), which was
first developed by Pearson (1905) to measure the degree
of association between two variables, X and Y, when the
different values ofX are categorized into various classes
or arrays. The square of the correlation ratio is referred
to as the differentiation ratio, and measures the propor­
tion of the variability in Y that is associated with mem­
bership of the different classes or arrays defined by X. It
can be calculated conveniently with the formula 1]2 =
SS(Treatment)/SS(Total) = 1 - SS(Residual)/SS(Total).

The correlation ratio thus subsumes both the linear
and the nonlinear components ofthe association between
X and Y. If the number of groups is greater than two (k,
say) and they have been assigned numerical values in an
arbitrary way, it does not make sense to talk about the
"direction" of such an association, and hence 1] is con­
ventionally taken to be a positive quantity (Peters & Van
Voorhis, 1940, pp. 313, 318). Pearson noted that 1] ~ r,
with equality only when there is a linear relationship be­
tween the dependent variable and the numerical values
assigned to the various groups defining the independent
variable; equivalently, the difference between the differ­
entiation ratio and the coefficient of determination is an
index of the deviation of the obtained regression curve
from the least-squares regression line (p. 11; cf. Fisher,
1922). The differentiation ratio is also equal to the squared
multiple correlation coefficient obtained when the single
X variable is recoded as (k - I) independent dichoto­
mous "dummy" variables (Cohen, 1969, p. 275; Winer
et aI., I991, p. 124).

Ifthe total variation in Y is referred to as SS(Total), the
mean square between the different groups defined by the
Xvariable is SS(Total) . 1]2/(k - I) and the mean square
within the different groups is SS(Total) . (1 - 1]2)/(N - k).
Under the null hypothesis ofno difference among the lat­
ter groups, these two quantities are independent esti­
mates of the population variance in Y, and hence the sta-
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tistic 1]2(N - k)/[(1 - 1]2)(k - I)] is distributed as Fwith
(k - I) and (N - k) degrees offreedom (Diamond, 1959,
p. 186; Hays, 1963, p. 548; McNemar, 1962, pp. 270-271).
Cohen (1965) pointed out that the corresponding values
of 1] can be calculated from reported values ofFby means
of the following formula: 1]2 = F(k - 1)/[F(k - 1) +
(N - k)]. When k = 2, 1] is equivalent to the point­
biserial correlation coefficient and can be calculated
from reported values of t by means of the following for­
mula: 1]2 = t 2/(t2 + N - 2) (cf. Hays, 1981, p. 294).

For modern readers, Pearson's (1905) use ofthe Greek
letter 1] is a trifle confusing, because it obscures the fact
that the correlation ratio measures the degree of associ­
ation between the X and Y variables within a particular
sample. Subsequent commentators recognized this ex­
plicitly or implicitly in their own writings on this subject
(see, e.g., Cohen, 1965; Diamond, 1959, pp. 54-55;
McNemar, 1962, pp. 202-203, 270-271; Peters & Van
Voorhis, 1940, pp. 312-319). Hays (1981, p. 349) sug­
gested that the correlation ratio was a perfectly satisfac­
tory descriptive statistic for evaluating the extent to
which the experimental treatments accounted for vari­
ance in the dependent variable. Nevertheless, it is not
satisfactory for most research purposes because it is not
an unbiased estimate of the corresponding parameter of
the underlying population.

Sample Estimates ofthe Population
Correlation Ratio

This problem had been suspected by a number of re­
searchers, including Pearson (1923) himself. However, it
was first properly analyzed by Kelley (1935), who de­
fined the true or population value of the correlation
ratio, if, in terms ofthe proportion of the total population
variance in Y that was explained by membership of the
various classes or arrays defined by X. In this case, the
residual variance in Y(i.e., crl ,x ) is equal to the variance
due to experimental error within each of the treatment
populations (i.e., cr2). Consequently, 'iF = 1 - cr2/crf.
An unbiased estimate of the residual variance in Y is
SS(Residual)/(N - k), whereas an unbiased estimate of
the total variance in Y is SS(Total)/(N - 1). Kelley then
argued that an unbiased estimate of iF, which he called
£2, is given by the formula

£2= 1- (N -1) . SS(Residual).
(N -k) . SS(Total)

An informal derivation of this was offered by Dia­
mond (1959, p. 130). Since 1]2 = 1 - SS(Residual)/
SS(Total), £2 = (1]2N - k + 1 - 1]2)/(N - k) = 1]2 ­
(1 - 1]2)(k - 1)/(N - k). Thus, £2 ~ 1]2, with equality
only when 1]2 = £2 = 1. Kelley also noted that when
£2 = 0, 1]2 = (k - 1)/(N - k), which he concluded was
the expected value of 1] 2 under the null hypothesis. It
may be noted that when k = 2, 1] 2== r 2 and £2 reduces to
the first of the two estimates of p2 that were derived ear­
lier. Peters and Van Voorhis (1940, pp. 421--422) ob-

served that corresponding values of £2 could be calcu­
lated from reported values ofFby means of the formula
£2 = (F - 1)(k - 1)/[F(k - 1) + (N - k)]. First Cohen
(1965) and then Winer et al. (1991, p. 124) pointed out
that the statistic £2 is exactly equivalent to the "shrunken"
estimate ofthe multiple correlation coefficient originally
proposed by Wherry (1931).

Hays (1963, p. 381-385) took an alternative approach
based on the deviation of the mean of the ith population
from the overall mean, t, = J1i - J1. Assuming a fixed­
effects design, cri = (I.rl)/k, as noted earlier. In this
case, crf = cr2 + a]. Hays introduced the symbol to? to
refer to the population value of the squared correlation
ratio, and noted that (in the present notation) w2 =

(crf - cr2)/crf = cri!(cr2 + crl) (see also Cohen, 1969,
pp. 273-274). The expected value of the mean square
across the treatments is [kn . cri/(k - 1) + cr2], and the
expected value of the residual mean square is cr2. Under
the null hypothesis (i.e., that cri = 0), the ratio MS(Treat­
ments)/MS(Residual) would be expected to follow the F
distribution with (k - 1) and (N - k) degrees of free­
dom. Under the alternative hypothesis (i.e., that cri *- 0),
that ratio would be expected to follow the noncentral F
distribution with a noncentrality parameter of -V(Ncri!cr2)

= -V[Nw2/(1 - ( 2) ]. It then follows that the expected
value of (k - I)[MS(Treatments) - MS(Residual)] is
equal to kn . cri, and that the expected value of (k - 1) .
MS(Treatments) plus (N - k + I) . MS(Residual) is
equal to kn( cr2 + cri). Hays concluded that the following
was a reasonable estimate of the squared population cor­
relation ratio:

est. w 2 = SS(Treatments)-(k -1) . MS(Residual).
SS(Total) + MS(Residual)

Fleiss (1969) and Winer et al. (1991, pp. 123-125) sub­
sequently provided similar estimates of w2. It can read­
ily be shown that est. w2 ~ 1]2, with equality only when
est. w2 = 1]2 = 1.

Glass and Hakstian (1969) subsequently noted that

£2 = SS(Treatments)-(k -I) . MS(Residual).
SS(Total)

and hence that £2/(est. ( 2 ) = I + [MS(Residual)/SS
(Total)]. They then commented that this latter quantity
has an upper bound when SS(Residual) = SS(Total) of
[I + l/(N - k)] and tends toward I as N increases, and
they concluded that in practice the two statistics would
probably not differ by more than 0.01 or 0.02. Fleiss (1969)
observed that corresponding values of est. w2 could be
calculated from reported values of F by the formula est.
to? = (k - 1)(F - l)/[(k - I )(F - I) + N], and Craig
et al. (1976) tabulated values ofest. w2 that corresponded
to commonly used threshold probability (alpha) levels
for different values of(N - 2). Hays (1963, pp. 326-327)
himself noted that when k = 2, w2 = (J1, - J12 )2f4crf,
and that values of est. w2 could be calculated from re-



ported values of t by the formula (t2 - 1)/(t2 + N - 1).
However, in this case, 1]2 == r 2 and est. 0)2 reduces to the
second of the two estimates of p 2 derived earlier.

The Intraclass Correlation Coefficient
It should be noted that Hays's derivation of est. w2 as­

sumed that the X variable was a fixed factor: That is, the
particular groups included in the study exhausted all the
treatments of interest and were not obtained by sampling
from some wider set of treatments or factor levels. When
X is a random factor, however, it is possible to define an
analogous measure of effect size, the population intra­
class correlation coefficient, PI' This expresses the pro­
portion of the total variance that is attributable to the
membership ofdifferent categories within this wider set.
(Note that this definition is more akin to that of the co­
efficient of determination, r 2, than to that of the coeffi­
cient of correlation, r.) Hays (1963, p. 424) commented
that this index was identical to w2 in its general form and
its meaning, but he claimed that different estimation meth­
ods applied in this situation.

In fact, it is possible to derive two different estimates
of PI that parallel the two different estimates of the
squared population correlation ratio described earlier. In
the first place, Kelley's (1935) account did not make
any assumption about whether the treatments factor
was fixed or random. Even with a random-effects design,
it remains the case that SS(Total)/(N - I) is an unbiased
estimate of the total variance in Yand that SS(Residual)/
(N - k) is an unbiased estimate of the residual variance
in Y. It thus follows that the ratio between the latter esti­
mate and the former estimate provides a reasonable esti­
mate of the proportion of the total variance in the depen­
dent variable that is not explained by membership of the
set of treatment categories defined by the independent
variable, and that the complement of this ratio, which
Kelley denoted by £2, yields a reasonable estimate of the
population intraclass correlation coefficient.

The second estimate ofPI is derived from the account
that had been presented incorrectly by Winer (1962,
pp. 57-65) in the case of a fixed factor. With a random
factor, the variance of the treatment means, a], is equal
to (2.rT)/(k - 1), and the expected value of the mean
squares across the treatments is (n . ai + ( 2 ) . Vaughan
and Corballis (1969) noted that an unbiased estimate of
aj was therefore given by the expression [MS(Treat­
ments) - MS(Residual)]/n. Since F = MS(Treatments)/
MS(Residual), this is equal to (F - 1) . MS(Residual)/n.
Moreover, an unbiased estimate of(ai + ( 2 ) is given by
[MS(Treatments) + (n - 1) . MS(Residual)]/n. It fol­
lows that the ratio between these two quantities will be a
reasonable estimate of the population intraclass correla­
tion coefficient:

t
_ MS(Treatments)- MS(Residual)

es ,PI ---
MS(Treatments)+(n -I) . MS(Residual)

Vaughan and Corballis pointed out that this was a con­
sistent estimate of PI' but also a biased one. They went
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on to show how this approach could be generalized to
two-factor and three-factor designs including estimates
of interaction effects and to designs using within-subject
comparisons. Fleiss (1969), Dodd and Schultz (1973),
and Shrout and Fleiss (1979) made further contributions
to this discussion.

Further Ramifications
It should also be noted that, although the different es­

timators of p, i]2, and PIdescribed above are prima facie
reasonable, none of them could be regarded as intrinsi­
cally unbiased (cf. Hedges & Olkin, 1985,p.102). Each
is based on estimating the value of a fraction by means
of inserting unbiased estimates of its numerator and de­
nominator. Winer et al. (1991, p. 125) justified this as a
"heuristic approach," and yet it is well known that the ex­
pected value of the ratio between two variables is a bi­
ased estimate of the ratio between their expected values
(see note I). Glass and Hakstian (1969) noted that £2was
not an unbiased estimate of i]2, contrary to Kelley's
(1935) original claim, while Winkler and Hays (1975)
were themselves quite explicit that Hays's estimate of to?

"is biased, and it may not be a good estimator in some
other respects as well" (p. 766). It would perhaps be rea­
sonable to think that £2 was more satisfactory than 1]2 as
an estimate of fj 2,and Winer (1971, p. 124) indeed stated
without elaboration that the former tended to be less bi­
ased than the latter. At present, however, there is no prin­
cipled means ofdifferentiating between £2 and est. 0)2 or
est. PI as estimates offj2.

Hays (1963, pp. 325, 547) introduced the expression
w2 as opposed to 1]2 to make it explicit that the former
was a measure of the strength of the association between
the independent and dependent variables within the un­
derlying population, while the latter was a descriptive
statistic based on the comparison of two or more sam­
ples. Nevertheless, Hays incorrectly referred to 1]2 itself
as the correlation ratio rather than as the squared corre­
lation ratio or differentiation ratio. This usage was also
adopted more recently by Hedges and Olkin (1985,
pp. 101-102).

Moreover, contemporary commentators have come to
use the symbol 1]2 as a parameter of a population (in
other words, the proportion of the total variance of the k
populations that is accounted for by membership of a
particular population) that itself has to be estimated from
statistics calculated from a sample. This practice was
employed by Wishart (1932), who introduced the sym­
bol £2 to denote the square of the correlation ratio cal­
culated from a sample, but it has also been picked up by
a number of modern authors (see Cohen, 1969, pp. 274­
281; Hedges & Olkin, 1985, pp. 101-102; Winer et al.,
1991, pp. 123-124). Cohen (1969) noted that the corre­
lation ratio was related to his effect size index, / (the
standard deviation of the standardized population
means), by the formula 1]2 = r« 1 + f2) or, equiva­
lently.j'? = 1]2/(1 - 1]2). This is analogous to the asso­
ciation between the point-biserial correlation coefficient
Ppb and the effect size index 8(Winer et al., 1991, p. 124).
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Variance is a quantity that by definition cannot be neg­
ative, and it follows a fortiori that measures ofexplained
variance must be nonnegative too. However, Peters and
Van Voorhis (1940, p. 355) pointed out that the estimate
£2 will be negative whenever MS(Treatments) is less
than MS(Residual), and it can easily be shown that the
same is also true of the other estimates of the proportion
of population variance that is explained by the indepen­
dent variable in question. Equivalently, these estimates
ofexplained population variance will be negative when­
ever the corresponding values of t or F are less than 1.
Hays (1963, pp. 327, 383) recommended that in this case
the researcher should set the estimate of the proportion
ofexplained population variance equal to zero. Vaughan
and Corballis (1969) pointed out that this strategy im­
poses a positive bias on these variables, and hence it in­
validates them as estimators of the relevant population
variance components. This consequence would not be
important if the researcher's concern were merely to de­
termine whether the observed estimate ofexplained pop­
ulation variance exceeded some critical level for the sole
purpose of rejecting the null hypothesis. Vaughan and
Corballis argued that the original negative value should
be reported if it is to be compared with estimates ob­
tained in other experiments.

Limitations ofMeasures ofExplained Variance
O'Grady (1982) identified three somewhat more fun­

damentallimitations on estimates of explained variance
as measures ofeffect size. First, if the dependent variable
is not perfectly reliable, then measurement error will
contribute to the within-group variability and reduce the
proportion ofvariance that can in principle be explained.
In general, an estimate of explained variance will have
an upper bound equal to the product of the reliabilities of
the independent and dependent variables. O'Grady argued
that, since many studies that try to measure explained
variance use only a single manipulation of the supposed
causal factor and a single criterion to evaluate the effects
of that manipulation, the reliabilities of these variables
might be quite low, even if they are sound from a theo­
retical point of view. Consequently, much psychological
research would appear to be destined to generate rela­
tively small measures of explained population variance.

Second, O'Grady pointed out a number of method­
ological issues. Possibly the most important of these is
the observation that measures of the proportion of ex­
plained population variance depend on the choice and
number of levels of the independent variable. Fisher
(1925, p. 219) pointed out that when the latter variable is
theoretically continuous, the value of the differentiation
ratio (and hence ofthe correlation ratio) obtained from a
particular sample would depend not only on the range of
values that is explored, but also on the number of values
employed within that range. Similarly, Lindquist (1953)
argued that "in most applications of analysis of variance
to experimental designs, the value of either F or £2 de­
pends upon the arbitrary choice of categories in the

treatment classifications, and hence is not meaningful as
an index ofstrength of relationship" (p. 63; see also Glass
& Hakstian, 1969; Hedges & Olkin, 1985, p. 104; Norton
& Lindquist, 1951). Levin (1967) noted in particular that
the percentage of explained variance could be artificially
inflated by the inclusion of a treatment group that was
known to produce a substantially different level ofperfor­
mance. Levin suggested that in this situation, SS(Treat­
ments) should be partitioned into (k - 1) orthogonal
components and a value of (j)2 calculated for each one.
O'Grady suggested that as a general rule the more diverse
a population is in terms ofthe factor of interest, the higher
will be the estimates of explained variance in the depen­
dent variable. As Hedges and Olkin (1985) concluded,
"Indices ofvariance accounted for depend on functions of
arbitrary design decisions as well as the underlying rela­
tionship between theoretical constructs" (p. 104).

Finally, O'Grady pointed out that if either or both of
two theoretical constructs are determined by more than
one causal agent, any estimates of explained variance
will be limited to the maximum amount of variance that
is actually shared between the two constructs. Since most
psychological constructs are considered to be multiply
determined, it follows that any measures of explained
criticisms of measures of explained variance are similar
to the limitations of the standardized mean difference
that were identified by Hedges (1981). Essentially they
amount to the point that measures of effect size depend
upon the population of measurements.

APPLICATIONS TO META-ANALYSIS

As noted, one motivation for seeking to derive mea­
sures of effect size is to evaluate the results obtained
across different studies in the research literature by means
of the techniques of meta-analysis (Glass et al., 1981).
Investigations of this sort have used measures based on
comparisons of treatment means as well as estimates of
the explained population variance. Rosenthal (1984, p. 23)
noted, however, that most meta-analytic studies compare
just two treatments at a time; thus measures ofexplained
variance are rarely used (though see Hyde, 1981).

As Hedges and Becker (1986, p. 16) remarked, the es­
timate d' is well suited to this purpose because it is a di­
rectional measure whose sampling properties are fairly
well understood. However, Hedges and Olkin (1985,
pp. 101, 103) argued that estimates of explained popula­
tion variance are inappropriate for combining the results
of different studies because they are inherently nondi­
rectional and hence can take on similar values for con­
flicting patterns of results. They cited a hypothetical sit­
uation in which two identical studies generated a
difference between two treatment groups of 1 standard
deviation in magnitude but in opposite directions.
Clearly, all the measures ofexplained variance discussed
earlier in this paper would yield identical values in the
two experiments, suggesting the erroneous conclusion
that the experiments had obtained the same results.



Whether such indices should in fact be used to average
and to compare findings across different studies is quite
another matter. Eysenck (1978) criticized techniques of
meta-analysis on the grounds that they ignore the
methodological adequacy of individual studies. As a re­
sult, pooled effect sizes may be influenced by design flaws
as well as by treatment effects. Glass (1976) suggested,
however, that "it is an empirical question whether rela­
tively poorly designed studies give results significantly at
variance with those of the best designed studies" (p. 4).
On the basis of his own experience, he claimed that the
difference is typically so small that to eliminate studies of
poor quality would be to discard unnecessarily a large
amount of important data. Hedges (1982c) similarly
claimed that Eysenck's criticism can be resisted (although
not decisively rebutted) within any particular application
of meta-analysis via a demonstration that the obtained es­
timates of effect size are homogeneous across the set of
studies available in the research literature.

Nonetheless, Linn and Petersen (1986) made the
more subtle comment that "the research perspectives in
a field influence what researchers study and constrain
the possible outcomes from meta-analysis" (p. 69). Cer­
tainly, statistical techniques of whatever sophistication
will not compensate for the preoccupations and biases of
previous researchers. Indeed, computing average mea­
sures of effect size across the available research litera­
ture if anything tends to legitimate those preoccupations
and biases. Be that as it may, meta-analysis represents
merely one application of measures ofeffect size in psy­
chological research, and it has not been the aim of this
paper to argue whether or not it constitutes a useful re­
search tool.

CONCLUSION

As Winer et al. (1991, p. 121) pointed out, an experi­
mental design that achieves a numerically high level of
statistical power can lead to the rejection of the null hy­
pothesis even though the treatment effects are quite trivial
from a practical or theoretical point ofview.The measures
of effect size described in this paper represent different
attempts to evaluate the importance of the observed ef­
fects in a way that is independent of the level of statisti­
cal significance that they attain.

In designs with just two levels of a fixed factor, it is
quite clear that the statistic d' defined by Hedges (1981)
is the preferred measure ofeffect size. This measure rep­
resents the standardized mean difference between the
two treatments, corrected for sampling bias. In the case
of designs that contrast more than two levels of a fixed
factor, there is no satisfactory analogous index of effect
size. Instead, it is necessary to use an index of explained
variance derived from the correlation ratio, such as Kel­
ley's (1935) £2 or Hays's (1963, pp. 381-385) est. w2•

Both of these indices incorporate a correction for sam­
pling bias, and there is currently no principled basis for
preferring one over the other. In the case of designs that
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contrast more than two levels of a random factor, the
same conclusion holds for Kelley's (1935) £2 and
Vaughan and Corballis's (1969) estimate of the popula­
tion intraclass correlation coefficient.

Measures ofeffect size were developed partly to com­
pare and evaluate results obtained across different stud­
ies in the research literature, but criticisms have been ex­
pressed by various authors regarding the weaknesses and
limitations of meta-analytic techniques. However, these
criticisms do not in themselves call into question the
usefulness of measures of effect size in reporting or in­
terpreting the findings obtained in single studies. Cohen
(1965, p. 106) and Hays (1963, p. 328) recommended
that researchers routinely report measures of effect size
as well as test statistics and significance levels as a mat­
ter ofgood practice, but this is not ofcourse to imply that
such measures should be used uncritically.

Indeed, O'Grady (1982) commented that in research
that is primarily concerned with understanding rather
than with prediction, the theoretical importance of an ef­
fect may have more to do with its existence than With its
magnitude. Chow (1988) argued more forcefully that in
the context of theory corroboration, estimates of effect
size may be largely irrelevant. Nevertheless, as Craig
et al. (1976) observed, the important point is that mea­
sures of effect size are simply another part of the com­
posite picture that a researcher builds when reporting
data that indicate that one or more variables are helpful
in understanding a particular behavior.
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NOTES

I. An estimate is consistent if it converges to the estimated value as
the size of the sample increases. An estimate is biased ifit tends to be
either systematically larger than the estimated value or systematically
smaller than the estimated value. Cramer (1946, pp. 254-255) showed
that the ratio between two consistent, unbiased estimates was itself a
consistent estimate of the ratio between the two estimated values. It is
not an unbiased estimate of the latter quantity, however. In particular,
if x and yare independent variables such that x > 0, then the expected
value of the ratio y/x is greater than or equal to the ratio between their
individual expected values. The latter inequality becomes an equality
only when the distribution of the denominator is wholly concentrated
at a single value or, in other words, when the denominator is actually a
constant (Kendall & Stuart, 1977, p. 242).

2. Strictly speaking, this depends upon the usual assumptions that
the sample means are normally distributed and that the sample vari­
ances are homogeneous. As will be discussed, the use of d' assumes
homogeneity of variance, but it is a consistent and unbiased estimator
of 0 regardless of whether the assumption of normality is satisfied.
More generally, issues concerning the robustness of statistical tests
have little bearing on the value of particular estimates of effect size.
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